
Spectrum Based Fault Localization using Graph Neural Networks

CS396A
Siddharth Satyam, Honey Nikam

November 28, 2021

Abstract

Fault localization methods have been widely studied and various learning and spectrum
based methods have been employed in prior literature. Traditional techniques have used
evaluation metrics based on Spectrum based Fault Localization (SBFL) such as Ochiai,
Tarantula, DStar, Jaccard etc. which provide suspiciousness scores for each component that
can be used to detect bugs. However, it is possible that bugs are not executed by a single
failing test case. Since the involvement in failing test case significantly affects localizability
of a bug with SBFL techniques, this limits the effectiveness of SBFL. In this study, we have
employed Graph Neural Networks(GNN) to create prediction scores for fault localization.
The graph structure is created by treating the spectrum data to be a network of test cases
and components and Deep Graph Library(DGL) has been used to implement the GNN.
Furthermore, we have compared the performance with the SBFL metric Ochiai.

Keywords: Graph Neural Networks, Spectrum Based Fault Localization

1 Introduction

In recent times, manual software debugging costs a lot of time as well as effort. Automated
techniques have thus become indispensable to avoid the associated manual labour. Fault local-
ization has been a topic of study, and several techniques have been employed in prior literature.
The most commonly used techniques employ methodologies that produce ranks based on sus-
piciousness scores for the program components. The developers can then manually work on
the components in the order of their ranks to find the bug in the program. Among the used
techniques, Spectrum based Fault Localization has been widely adopted due to its simplicity
and lightweightness. These metrics such as Ochiai, Tarantula, Dstar, Jaccard etc. use statis-
tical analysis on the coverage data of failed/passed tests. The statistical analysis relies on the
intuition that a failing test case may correspond to a buggy component. The major limitation
of the technique is that a failing test case may execute a component that is not buggy and
a buggy component might coincidentally correspond to a passing component. To bridge the
limitations, Mutation-based Fault Localization (MBFL) was widely used. Moreover, machine
learning techniques have been employed such as Learning-to-rank [1], which is a supervised
machine learning algorithm that uses the suspiciousness scores as features for improved fault
localization. Recently, a technique employing machine learning, DeepFL was introduced [1]. It
takes suspiciousness-based features from the fault localization area (including both SBFL and
MBFL), fault-proneness-based features and textual-similarity-based features from the informa-
tion retrieval area. These methods have significantly improved over the conventional SBFL
metrics and encouraged further research in the area. In our work, we have used Graph Neu-
ral Networks(GNN) to attempt the Spectrum-based fault localization problem. We treat the
test cases and components as a network of nodes with directed edges that correspond to the
execution of components by test cases.

1

1.1 Spectrum

A spectrum consists of an activity matrix and a corresponding error vector. The activity
matrix consists of rows corresponding to test cases and columns corresponding to components.
An element in the matrix describes which test case executes the specific program component.
An error vector, additionally, provides the information about whether the test case is passing
or failing. Fig.1 shows a spectrum consisting of an activity matrix and error vector.

Figure 1: A spectrum consisting of an activity matrix and error vector

1.2 Metric-based SBFL techniques

These techniques use ranking metric formulas to produce the suspiciousness scores. To deter-
mine correlation between program components and test case results, they use program spectrum
information as input. Ochiai, a widely used SBFL metric, is described as follows:
ef = No. of failed tests that execute the component.
ep = No. of passed tests that execute the component.
nf = No. of failed tests that do not execute the component.
np = No. of passed tests that do not execute the component.

Ochiai(component) =
ef√

(ef + nf) · (ef + ep)
(1)

1.3 Graph Neural Network

GNNs are neural networks that encode the dependence of nodes from neighboring nodes in a
graph[2]. The dependence can be quantified by an embedding vector of a node which carries
information through message passing iterations from its neighbors. An embedding vector is a
result of graph representation learning [2], that represents the graph nodes and edges as low
dimensional vectors that can be used as features in learning-based procedures. The message
passing process comprises of aggregation and an additional update operation that results in an
embedding that can be further used as features in a neural network. The simple aggregation
function can involve averaging the neighbor messages. A neural network could then be applied
to make the function complex. The process can be given by equation (2):

hkv = σ(Wk ·
∑

u∈N(v)

hk−1
u

|N(v)|
+Bk · hk−1

v) (2)

2

where hkv is the kth layer embedding of a node v, σ is a non-linear function such as ReLU or
tanh, N(v) is the neighbor set of node v, Wk is the weight associated with the neural network
and hk−1

v is the previous layer embedding of v.

2 Methodology

Usually, GNN models assign multidimensional vectors, or embeddings ∈ R2 to vertices. These
embeddings are then refined using information from neighboring nodes through a number of
message passing iterations [4]. The adjacency information controls which are the valid incoming
messages for a given vertex, these filtered messages undergo an aggregating function and finally
a neural network such as feed-forward network receives the aggregated messages and computes
the embedding update for the given vertex.

2.1 Setting up the Graph

In our implementation, the graph is made of two types of nodes, components and test cases.
If a test case executes a particular component, then two directed edges exist between the two
nodes, one from the component node to the test case node and another in the opposite direction
as shown in Fig.2. Through the error vector we have information about which test cases pass
and which ones fail. This information is encoded as node embeddings. For a failing test case,
it’s embedding is a 1 × 5 vector where each value is 1. Similarly for a passing test case, the
embedding is a 1× 5 vector of zeros.

2.2 Node Aggregation

The graph neural network structure allows for exchange of information among the different
nodes. For example, if a test case T is failing and is executing components A and B, the

Figure 2: Component embeddings are computed using aggregation after multiple message pass-
ing iterations. These embeddings are fed into an MLP to give component suspicion probabilites

3

components must receive the information that the test case T is failing. This information prop-
agates through the edges that exist between the nodes via node aggregation. When component
node A aggregates, it pulls information from its neighboring nodes (in our case, test cases that
are executing it) and updates its own node embedding. In our implementation we have used a
simple node aggregation function which sums the neighboring node embeddings and averages
them to update the current node embedding. There is a traversal order which can be specified
for node aggregation. In our case, we first have all node components aggregate information
at once, then we have all test case components aggregate information, followed again by node
components aggregating embeddings. Multiple passes between the test cases and components
allows for information to flow between unconnected nodes as well.

2.3 Deep Graph Library

Deep Graph Library (DGL) is a Python package built for easy implementation of graph neural
network model family. We use the dgl.heterograph function to build a graph from the activity
matrix and assign node embeddings for the different nodes. For passing messages to and fro,
we use the built in function prop nodes, which takes in different inputs, the first being the
traversal order. The traversal order is specified by the nodes generator. It generates node
frontiers, which is a list or a tensor of nodes. The nodes in the same frontier will be triggered
together, while nodes in different frontiers will be triggered according to the generating order.
We use the dgl built-in function ’mean’ that aggregates messages by mean.

2.4 The Multi-layer Perceptron

The updated embeddings of component nodes after multiple message passes serve as the training
input to a multi-layer perceptron. The output are the actual component labels, i.e., the informa-
tion if a component is buggy or not. Component label is a vector of size num components× 1,
where the value is 1 if the ith component is buggy and 0 if the ith component is not buggy. The
MLP consists of one hidden layer. A vector of size 1× 5 (component node embedding) is given
as the input. This embedding is multiplied by a 5 × 5 weight matrix to give a 1 × 5 hidden
layer. The hidden layer is further multiplied by a 5× 1 weight matrix to give 1× 1 output. A
sigmoid function is applied to this output to give a logit probability of how buggy a component
is. The closer the value is to 1 the more likely it is to be buggy.

Figure 4: The MLP accepts an embedding vector and generates logit probabilities

4

Algorithm 1 Pseudocode

1: {create adjacency matrix from spectrum}
2: adj[i, j]← 1 iff (∃e ∈ E|e = (vi, vj))|∀vi ∈ T, vj ∈ C
3:

4: Create a dgl graph from the adjacency matrix
5:

6: {assign initial test embeddings}
7: if test label = 0 then
8: test embedding ← [0, 0, 0, 0, 0]
9: else

10: test embedding ← [1, 1, 1, 1, 1]
11: end if
12:

13: {randomly initialize component embeddings}
14: component embedding ← U(0, 1)
15:

16: Perform message passing iterations to update embeddings using prop nodes
17: message passing(traversal order, message function, aggregation function)
18:

19: {use an MLP to generate logit probabilities}
20: logit←MLP(component embeddings)

3 Results and Discussion

3.1 Node Embeddings

The results show a pattern in the computed component embeddings after several message
passes. We considered a graph of 8 nodes with 3 test cases and 5 components. As shown
in Fig 4., test case 1 is a failing test case and test case 0, 2 are passing test cases. First,
the components pull information from neighboring nodes and aggregate, then the test cases
pull information and perform aggregation followed again by the component nodes. We see
that components 3 and 4 are connected to the failing test cases and hence are more likely
to be buggy. Since 3 is only connected to a failing test case while 4 is connected to pass-
ing test case as well, it is also intuitive that 3 is more likely to be buggy than 4. We
see that this is reflected in the node embeddings of the components. The node embedding
of component 3 generated after several message passes [0.7500, 0.7500, 0.7500, 0.7500, 0.7500]
is greater than that of 4 [0.4583, 0.4583, 0.4583, 0.4583, 0.4583]. The embeddings of compo-
nent 5, 6, 7 are [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.1667, 0.1667, 0.1667, 0.1667, 0.1667] and
[0.1667, 0.1667, 0.1667, 0.1667, 0.1667] respectively. Hence we see that a pattern is generated in
the embeddings where a value closer to 1 reflects that the component is likely to be buggy
whereas a value closer to 0 indicates that the component is likely to be non-buggy. The pattern
reflected in the component node embedding were then used as inputs in the MLP.

5

Figure 5: A graph structure with 3 test case nodes and 5 component nodes. The color intensity
of component nodes represents their suspiciousness as result of message passing iteration.

3.2 Learning from Imbalanced Data

We performed message aggregation and trained our model to predict suspicion probabilities on
a sample training data. Our initial input data had 33 test cases and 193 components. Out
of the 193 components, 1 was a buggy component. Since our input data was imbalanced, i.e.
the ratio of buggy components to non-buggy components was high, our model could not locate
the buggy component and assigned values close to zero to all components. This gave us a high
accuracy since only 1 out of 193 components was buggy.

3.3 Oversampling

A way to circumvent the problem of imbalanced data is oversampling. Oversampling the mi-
nority class, which in our case is buggy components can make the data less biased. In our
initial data the 67th component was buggy. We created a new input data in which every even
column (indexed from 0) in the activity matrix was the same as the initial input activity ma-
trix, and every odd column was the same as the 67th component column of the initial activity
matrix. Hence our new input activity matrix contains alternating buggy and non-buggy, i.e.
193 × 2 = 386 components out of which half are buggy. The model assigns a logit probability
close to 0 to the non-buggy components and close to 0.9 to the buggy components. Hence we
see that the model performs well on the training set. However the performance of the model on
a random testing data is still subpar.

Figure 6: The logit probabilities(left) and Ochiai scores(right)

6

4 Future Works

To make the data balanced, we alternated one single buggy-component column. It is possible
that the model has memorized this particular column and hence outputs it as buggy. It is also
possible that the model has learned the alternate pattern that exists in the input data and
accordingly outputs an alternating output of values close to 0 and 0.9. In either case, there is a
possiblity that our model is not learning from the computed component embeddings but from
some patterns that have coincidentally resulted because of modifying the input data. Because of
these factors, the high accuracy of the predicted data can be misleading. To make the data more
randomized, we aim to work with an input data which has multiple buggy components. We will
randomly oversample these component columns to create a non-biased activity matrix. We hope
that this will help the model to learn using the actual component embeddings and give us better
results. In the present model we train the parameters of the MLP. However the GNN does not
have any trainable parameters as we use a simple mean function for aggregation. The training
accuracy can improve significantly if trainable parameters are introduced in the GNN by using
a neural network based aggregation function such as Graph Convolutional Networks(GCN) or
Graph Attention Networks(GAN) .

References

[1] Li, Xia, Li, Wei, Zhang, Yuqun, and Zhang, Lingming.. ”DeepFL: integrating multiple fault
diagnosis dimensions for deep fault localization”. ACM SIGSOFT International Symposium
on Software Testing and Analysis. https://doi.org/10.1145/3293882.3330574.

[2] Jie Zhou et.al, Graph neural networks: A review of methods and applications, AI Open,
Vol. 1, 2020, pp 57-81, ISSN 2666-6510, doi: https://doi.org/10.1016/j.aiopen.2021.01.001.

[3] Souza, Higor Chaim, Marcos Kon, Fabio. (2016). Spectrum-based Software Fault Local-
ization: A Survey of Techniques, Advances, and Challenges.[online]

[4] Lemos, Henrique Prates, Marcelo Avelar, Pedro Lamb, Lúıs. (2019). Graph Colouring
Meets Deep Learning: Effective Graph Neural Network Models for Combinatorial Prob-
lems. 879-885. doi: 10.1109/ICTAI.2019.00125.

[5] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn and D. Lo, ”A Critical Evaluation
of Spectrum-Based Fault Localization Techniques on a Large-Scale Software System,” 2017
IEEE International Conference on Software Quality, Reliability and Security (QRS), 2017,
pp. 114-125, doi: 10.1109/QRS.2017.22.

7

